1932

Abstract

Fungal-mediated disease progression and antifungal drug efficacy are significantly impacted by the dynamic infection microenvironment. At the site of infection, oxygen often becomes limiting and induces a hypoxia response in both the fungal pathogen and host cells. The fungal hypoxia response impacts several important aspects of fungal biology that contribute to pathogenesis, virulence, antifungal drug susceptibility, and ultimately infection outcomes. In this review, we summarize recent advances in understanding the molecular mechanisms of the hypoxia response in the most common human fungal pathogens, discuss potential therapeutic opportunities, and highlight important areas for future research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-032521-021745
2023-09-15
2024-06-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/77/1/annurev-micro-032521-021745.html?itemId=/content/journals/10.1146/annurev-micro-032521-021745&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Allert S, Förster TM, Svensson CM, Richardson JP, Pawlik T et al. 2018. Candida albicans-induced epithelial damage mediates translocation through intestinal barriers. mBio 9:3e00915–18
    [Google Scholar]
  2. 2.
    Andre AC, Laborde M, Marteyn BS. 2022. The battle for oxygen during bacterial and fungal infections. Trends Microbiol. 30:643–53
    [Google Scholar]
  3. 3.
    Arroyo MA, Schmitt BH, Davis TE, Relich RF. 2016. Detection of the dimorphic phases of Mucor circinelloides in blood cultures from an immunosuppressed female. Case Rep. Infect. Dis. 2016:3720549
    [Google Scholar]
  4. 4.
    Askew C, Sellam A, Epp E, Hogues H, Mullick A et al. 2009. Transcriptional regulation of carbohydrate metabolism in the human pathogen Candida albicans. PLOS Pathog. 5:e1000612
    [Google Scholar]
  5. 5.
    Askew C, Sellam A, Epp E, Mallick J, Hogues H et al. 2011. The zinc cluster transcription factor Ahr1p directs Mcm1p regulation of Candida albicans adhesion. Mol. Microbiol. 79:940–53
    [Google Scholar]
  6. 6.
    Ast T, Mootha VK. 2019. Oxygen and mammalian cell culture: Are we repeating the experiment of Dr. Ox?. Nat. Metab. 1:858–60
    [Google Scholar]
  7. 7.
    Barker BM, Kroll K, Vodisch M, Mazurie A, Kniemeyer O, Cramer RA 2012. Transcriptomic and proteomic analyses of the Aspergillus fumigatus hypoxia response using an oxygen-controlled fermenter. BMC Genom. 13:62
    [Google Scholar]
  8. 8.
    Beattie SR, Mark KMK, Thammahong A, Ries LNA, Dhingra S et al. 2017. Filamentous fungal carbon catabolite repression supports metabolic plasticity and stress responses essential for disease progression. PLOS Pathog. 13:e1006340
    [Google Scholar]
  9. 9.
    Ben-Ami R, Albert ND, Lewis RE, Kontoyiannis DP. 2013. Proangiogenic growth factors potentiate in situ angiogenesis and enhance antifungal drug activity in murine invasive aspergillosis. J. Infect. Dis. 207:1066–74
    [Google Scholar]
  10. 10.
    Bonhomme J, Chauvel M, Goyard S, Roux P, Rossignol T, d'Enfert C. 2011. Contribution of the glycolytic flux and hypoxia adaptation to efficient biofilm formation by Candida albicans. Mol. Microbiol. 80:995–1013
    [Google Scholar]
  11. 11.
    Bottcher B, Driesch D, Kruger T, Garbe E, Gerwien F et al. 2022. Impaired amino acid uptake leads to global metabolic imbalance of Candida albicans biofilms. npj Biofilms Microbiomes 8:78
    [Google Scholar]
  12. 12.
    Brown DH Jr., Giusani AD, Chen X, Kumamoto CA. 1999. Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene. Mol. Microbiol. 34:651–62
    [Google Scholar]
  13. 13.
    Bruick RK, McKnight SL. 2001. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294:1337–40
    [Google Scholar]
  14. 14.
    Bruno D, Bartelli TF, Briones MRS. 2018. Genome sequence of a Staphylococcus epidermidis strain (GTH12) associated with Candida albicans sc5314 cultured under hypoxia at 37°C in glycerol for 12 weeks. Genome Announc. 6:25e00533–18
    [Google Scholar]
  15. 15.
    Bruno D, Bartelli TF, Rodrigues CR, Briones MRS. 2018. Prolonged growth of Candida albicans reveals co-isolated bacteria from single yeast colonies. Infect. Genet. Evol. 65:117–26
    [Google Scholar]
  16. 16.
    Burgain A, Pic E, Markey L, Tebbji F, Kumamoto CA, Sellam A. 2019. A novel genetic circuitry governing hypoxic metabolic flexibility, commensalism and virulence in the fungal pathogen Candida albicans. PLOS Pathog. 15:e1007823
    [Google Scholar]
  17. 17.
    Casadevall A, Kontoyiannis DP, Robert V. 2021. Environmental Candida auris and the global warming emergence hypothesis. mBio 12:2e00360–21
    [Google Scholar]
  18. 18.
    Chang YC, Bien CM, Lee H, Espenshade PJ, Kwon-Chung KJ. 2007. Sre1p, a regulator of oxygen sensing and sterol homeostasis, is required for virulence in Cryptococcus neoformans. Mol. Microbiol. 64:614–29
    [Google Scholar]
  19. 19.
    Chen H, Zhou X, Ren B, Cheng L 2020. The regulation of hyphae growth in Candida albicans. Virulence 11:337–48
    [Google Scholar]
  20. 20.
    Chen M, Cheng T, Xu C, Pan M, Wu J et al. 2022. Sodium houttuyfonate enhances the mono-therapy of fluconazole on oropharyngeal candidiasis (OPC) through HIF-1alpha/IL-17 axis by inhibiting cAMP mediated filamentation in Candida albicans-Candida glabrata dual biofilms. Virulence 13:428–43
    [Google Scholar]
  21. 21.
    Childers DS, Avelar GM, Bain JM, Pradhan A, Larcombe DE et al. 2020. Epitope shaving promotes fungal immune evasion. mBio 11:4e00984–20
    [Google Scholar]
  22. 22.
    Chun CD, Liu OW, Madhani HD. 2007. A link between virulence and homeostatic responses to hypoxia during infection by the human fungal pathogen Cryptococcus neoformans. PLOS Pathog. 3:e22
    [Google Scholar]
  23. 23.
    Chung D, Barker BM, Carey CC, Merriman B, Werner ER et al. 2014. ChIP-seq and in vivo transcriptome analyses of the Aspergillus fumigatus SREBP SrbA reveals a new regulator of the fungal hypoxia response and virulence. PLOS Pathog. 10:e1004487
    [Google Scholar]
  24. 24.
    Chung H, Lee YH. 2020. Hypoxia: a double-edged sword during fungal pathogenesis?. Front. Microbiol. 11:1920
    [Google Scholar]
  25. 25.
    Clasen SJ, Shao W, Gu H Espenshade PJ. 2017. Prolyl dihydroxylation of unassembled uS12/Rps23 regulates fungal hypoxic adaptation. eLife 6:e28563
    [Google Scholar]
  26. 26.
    Cooper BH. 1987. A case of pseudoparacoccidioidomycosis: detection of the yeast phase of Mucor circinelloides in a clinical specimen. Mycopathologia 97:189–93
    [Google Scholar]
  27. 27.
    Cottier F, Sherrington S, Cockerill S, Del Olmo Toledo V, Kissane S et al. 2019. Remasking of Candida albicans β-glucan in response to environmental pH is regulated by quorum sensing. mBio 10:5e02347–19
    [Google Scholar]
  28. 28.
    Crabtree JN, Okagaki LH, Wiesner DL, Strain AK, Nielsen JN, Nielsen K. 2012. Titan cell production enhances the virulence of Cryptococcus neoformans. Infect. Immun. 80:3776–85
    [Google Scholar]
  29. 29.
    Cunningham AF, Spreadbury CL. 1998. Mycobacterial stationary phase induced by low oxygen tension: cell wall thickening and localization of the 16-kilodalton alpha-crystallin homolog. J. Bacteriol. 180:801–8
    [Google Scholar]
  30. 30.
    Dagley MJ, Gentle IE, Beilharz TH, Pettolino FA, Djordjevic JT et al. 2011. Cell wall integrity is linked to mitochondria and phospholipid homeostasis in Candida albicans through the activity of the post-transcriptional regulator Ccr4-Pop2. Mol. Microbiol. 79:968–89
    [Google Scholar]
  31. 31.
    Delfino E, Del Puente F, Briano F, Sepulcri C, Giacobbe DR. 2019. Respiratory fungal diseases in adult patients with cystic fibrosis. Clin. Med. Insights Circ. Respir. Pulm. Med. 13: https://doi.org/10.1177/1179548419849939
    [Google Scholar]
  32. 32.
    Demers EG, Biermann AR, Masonjones S, Crocker AW, Ashare A et al. 2018. Evolution of drug resistance in an antifungal-naive chronic Candida lusitaniae infection. PNAS 115:12040–45
    [Google Scholar]
  33. 33.
    Demers EG, Stajich JE, Ashare A, Occhipinti P, Hogan DA. 2021. Balancing positive and negative selection: in vivo evolution of Candida lusitaniae MRR1. mBio 12:2e03328–20
    [Google Scholar]
  34. 34.
    Desai PR, van Wijlick L, Kurtz D, Juchimiuk M, Ernst JF. 2015. Hypoxia and temperature regulated morphogenesis in Candida albicans. PLOS Genet. 11:e1005447
    [Google Scholar]
  35. 35.
    Dhingra S, Buckey JC, Cramer RA. 2018. Hyperbaric oxygen reduces Aspergillus fumigatus proliferation in vitro and influences in vivo disease outcomes. Antimicrob. Agents Chemother. 62:3e01953–17
    [Google Scholar]
  36. 36.
    Dilek A, Ozaras R, Ozkaya S, Sunbul M, Sen EI, Leblebicioglu H. 2021. COVID-19-associated mucormycosis: case report and systematic review. Travel Med. Infect. Dis. 44:102148
    [Google Scholar]
  37. 37.
    Dismukes GC, Klimov VV, Baranov SV, Kozlov YN, DasGupta J, Tyryshkin A. 2001. The origin of atmospheric oxygen on Earth: the innovation of oxygenic photosynthesis. PNAS 98:2170–75
    [Google Scholar]
  38. 38.
    DuBois JC, Pasula R, Dade JE, Smulian AG. 2016. Yeast transcriptome and in vivo hypoxia detection reveals Histoplasma capsulatum response to low oxygen tension. Med. Mycol. 54:40–58
    [Google Scholar]
  39. 39.
    DuBois JC, Smulian AG. 2016. Sterol regulatory element binding protein (Srb1) is required for hypoxic adaptation and virulence in the dimorphic fungus Histoplasma capsulatum. PLOS ONE 11:e0163849
    [Google Scholar]
  40. 40.
    Duesberg U, Wosniok J, Naehrlich L, Eschenhagen P, Schwarz C. 2020. Risk factors for respiratory Aspergillus fumigatus in German Cystic Fibrosis patients and impact on lung function. Sci. Rep. 10:18999
    [Google Scholar]
  41. 41.
    Engel T, Verweij PE, van den Heuvel J, Wangmo D, Zhang J et al. 2020. Parasexual recombination enables Aspergillus fumigatus to persist in cystic fibrosis. ERJ Open Res. 6:400020–2020
    [Google Scholar]
  42. 42.
    Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J et al. 2001. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107:43–54
    [Google Scholar]
  43. 43.
    Ernst JF, Tielker D. 2009. Responses to hypoxia in fungal pathogens. Cell. Microbiol. 11:183–90
    [Google Scholar]
  44. 44.
    Esher SK, Ost KS, Kohlbrenner MA, Pianalto KM, Telzrow CL et al. 2018. Defects in intracellular trafficking of fungal cell wall synthases lead to aberrant host immune recognition. PLOS Pathog. 14:e1007126
    [Google Scholar]
  45. 45.
    Fan D, Coughlin LA, Neubauer MM, Kim J, Kim MS et al. 2015. Activation of HIF-1alpha and LL-37 by commensal bacteria inhibits Candida albicans colonization. Nat. Med. 21:808–14
    [Google Scholar]
  46. 46.
    Fecher RA, Horwath MC, Friedrich D, Rupp J, Deepe GS Jr. 2016. Inverse correlation between IL-10 and HIF-1α in macrophages infected with Histoplasma capsulatum. J. Immunol. 197:565–79
    [Google Scholar]
  47. 47.
    Ferguson BJ, Mitchell TG, Moon R, Camporesi EM, Farmer J. 1988. Adjunctive hyperbaric oxygen for treatment of rhinocerebral mucormycosis. Rev. Infect. Dis. 10:551–59
    [Google Scholar]
  48. 48.
    Fourie R, Cason ED, Albertyn J, Pohl CH. 2021. Transcriptional response of Candida albicans to Pseudomonas aeruginosa in a polymicrobial biofilm. G3 11:4jkab042
    [Google Scholar]
  49. 49.
    Fox EP, Cowley ES, Nobile CJ, Hartooni N, Newman DK, Johnson AD. 2014. Anaerobic bacteria grow within Candida albicans biofilms and induce biofilm formation in suspension cultures. Curr. Biol. 24:2411–16
    [Google Scholar]
  50. 50.
    Gallo M, Giovati L, Magliani W, Pertinhez TA, Conti S et al. 2022. Metabolic plasticity of Candida albicans in response to different environmental conditions. J. Fungi 8:7723
    [Google Scholar]
  51. 51.
    Gomes MZ, Lewis RE, Kontoyiannis DP. 2011. Mucormycosis caused by unusual mucormycetes, non-Rhizopus, -Mucor, and -Lichtheimia species. Clin. Microbiol. Rev. 24:411–45
    [Google Scholar]
  52. 52.
    Goyer M, Loiselet A, Bon F, L'Ollivier C, Laue M et al. 2016. Intestinal cell tight junctions limit invasion of Candida albicans through active penetration and endocytosis in the early stages of the interaction of the fungus with the intestinal barrier. PLOS ONE 11:e0149159
    [Google Scholar]
  53. 53.
    Grahl N, Dinamarco TM, Willger SD, Goldman GH, Cramer RA. 2012. Aspergillus fumigatus mitochondrial electron transport chain mediates oxidative stress homeostasis, hypoxia responses and fungal pathogenesis. Mol. Microbiol. 84:383–99
    [Google Scholar]
  54. 54.
    Grahl N, Puttikamonkul S, Macdonald JM, Gamcsik MP, Ngo LY et al. 2011. In vivo hypoxia and a fungal alcohol dehydrogenase influence the pathogenesis of invasive pulmonary aspergillosis. PLOS Pathog. 7:e1002145
    [Google Scholar]
  55. 55.
    Grahl N, Shepardson KM, Chung D, Cramer RA. 2012. Hypoxia and fungal pathogenesis: to air or not to air?. Eukaryot. Cell 11:560–70
    [Google Scholar]
  56. 56.
    Guida A, Lindstadt C, Maguire SL, Ding C, Higgins DG et al. 2011. Using RNA-seq to determine the transcriptional landscape and the hypoxic response of the pathogenic yeast Candida parapsilosis. BMC Genom. 12:628
    [Google Scholar]
  57. 57.
    Gupta P, Meena RC, Kumar N. 2017. Functional analysis of selected deletion mutants in Candida glabrata under hypoxia. 3 Biotech 7:193
    [Google Scholar]
  58. 58.
    Gupta P, Meena RC, Kumar N. 2020. Functional characterization of Candida glabrata ORF, CAGL0M02233g for its role in stress tolerance and virulence. Microb. Pathog. 149:104469
    [Google Scholar]
  59. 59.
    Gupta P, Nath S, Meena RC, Kumar N. 2014. Comparative effects of hypoxia and hypoxia mimetic cobalt chloride on in vitro adhesion, biofilm formation and susceptibility to amphotericin B of Candida glabrata. J. Mycol. Med. 24:e169–77
    [Google Scholar]
  60. 60.
    Hagiwara D, Miura D, Shimizu K, Paul S, Ohba A et al. 2017. A novel Zn2-Cys6 transcription factor AtrR plays a key role in an azole resistance mechanism of Aspergillus fumigatus by co-regulating cyp51A and cdr1B expressions. PLOS Pathog. 13:e1006096
    [Google Scholar]
  61. 61.
    Henry M, Burgain A, Tebbji F, Sellam A. 2021. Transcriptional control of hypoxic hyphal growth in the fungal pathogen Candida albicans. Front. Cell Infect. Microbiol. 11:770478
    [Google Scholar]
  62. 62.
    Hillmann F, Linde J, Beckmann N, Cyrulies M, Strassburger M et al. 2014. The novel globin protein fungoglobin is involved in low oxygen adaptation of Aspergillus fumigatus. Mol. Microbiol. 93:539–53
    [Google Scholar]
  63. 63.
    Hommel B, Mukaremera L, Cordero RJB, Coelho C, Desjardins CA et al. 2018. Titan cells formation in Cryptococcus neoformans is finely tuned by environmental conditions and modulated by positive and negative genetic regulators. PLOS Pathog. 14:e1006982
    [Google Scholar]
  64. 64.
    Hommel B, Sturny-Leclere A, Volant S, Veluppillai N, Duchateau M et al. 2019. Cryptococcus neoformans resists to drastic conditions by switching to viable but non-culturable cell phenotype. PLOS Pathog. 15:e1007945 Erratum 2019. PLOS Pathog. 15:9e1008070
    [Google Scholar]
  65. 65.
    Horvath M, Nagy G, Zsindely N, Bodai L, Horvath P et al. 2021. Oral epithelial cells distinguish between Candida species with high or low pathogenic potential through MicroRNA regulation. mSystems 6:3e00163–21
    [Google Scholar]
  66. 66.
    Hughes BT, Espenshade PJ. 2008. Oxygen-regulated degradation of fission yeast SREBP by Ofd1, a prolyl hydroxylase family member. EMBO J. 27:1491–501
    [Google Scholar]
  67. 67.
    Ingavale SS, Chang YC, Lee H, McClelland CM, Leong ML, Kwon-Chung KJ. 2008. Importance of mitochondria in survival of Cryptococcus neoformans under low oxygen conditions and tolerance to cobalt chloride. PLOS Pathog. 4:e1000155
    [Google Scholar]
  68. 68.
    Ivan M, Kondo K, Yang H, Kim W, Valiando J et al. 2001. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292:464–68
    [Google Scholar]
  69. 69.
    Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J et al. 2001. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–72
    [Google Scholar]
  70. 70.
    Kamran M, Calcagno AM, Findon H, Bignell E, Jones MD et al. 2004. Inactivation of transcription factor gene ACE2 in the fungal pathogen Candida glabrata results in hypervirulence. Eukaryot. Cell 3:546–52
    [Google Scholar]
  71. 71.
    Kelly MT, MacCallum DM, Clancy SD, Odds FC, Brown AJ, Butler G. 2004. The Candida albicans CaACE2 gene affects morphogenesis, adherence and virulence. Mol. Microbiol. 53:969–83
    [Google Scholar]
  72. 72.
    Kowalski CH, Beattie SR, Fuller KK, McGurk EA, Tang YW et al. 2016. Heterogeneity among isolates reveals that fitness in low oxygen correlates with Aspergillus fumigatus virulence. mBio 7:5e01515–16
    [Google Scholar]
  73. 73.
    Kowalski CH, Kerkaert JD, Liu KW, Bond MC, Hartmann R et al. 2019. Fungal biofilm morphology impacts hypoxia fitness and disease progression. Nat. Microbiol. 4:2430–41
    [Google Scholar]
  74. 74.
    Kowalski CH, Morelli KA, Schultz D, Nadell CD, Cramer RA. 2020. Fungal biofilm architecture produces hypoxic microenvironments that drive antifungal resistance. PNAS 117:22473–83
    [Google Scholar]
  75. 75.
    Kowalski CH, Morelli KA, Stajich JE, Nadell CD, Cramer RA. 2021. A heterogeneously expressed gene family modulates the biofilm architecture and hypoxic growth of Aspergillus fumigatus. mBio 12:1e03579–20
    [Google Scholar]
  76. 76.
    Kroll K, Pahtz V, Hillmann F, Vaknin Y, Schmidt-Heck W et al. 2014. Identification of hypoxia-inducible target genes of Aspergillus fumigatus by transcriptome analysis reveals cellular respiration as an important contributor to hypoxic survival. Eukaryot. Cell 13:1241–53
    [Google Scholar]
  77. 77.
    Kroll K, Shekhova E, Mattern DJ, Thywissen A, Jacobsen ID et al. 2016. The hypoxia-induced dehydrogenase HorA is required for coenzyme Q10 biosynthesis, azole sensitivity and virulence of Aspergillus fumigatus. Mol. Microbiol. 101:92–108
    [Google Scholar]
  78. 78.
    Lane S, Di Lena P, Tormanen K, Baldi P, Liu H. 2015. Function and regulation of Cph2 in Candida albicans. Eukaryot. Cell 14:1114–26
    [Google Scholar]
  79. 79.
    Lee CY, Stewart EV, Hughes BT, Espenshade PJ. 2009. Oxygen-dependent binding of Nro1 to the prolyl hydroxylase Ofd1 regulates SREBP degradation in yeast. EMBO J. 28:135–43
    [Google Scholar]
  80. 80.
    Lee SC, Li A, Calo S, Heitman J. 2013. Calcineurin plays key roles in the dimorphic transition and virulence of the human pathogenic zygomycete Mucor circinelloides. PLOS Pathog. 9:e1003625
    [Google Scholar]
  81. 81.
    Lingo DE, Shukla N, Osmani AH, Osmani SA. 2021. Aspergillus nidulans biofilm formation modifies cellular architecture and enables light-activated autophagy. Mol. Biol. Cell 32:1181–92
    [Google Scholar]
  82. 82.
    Lo HJ, Kohler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR. 1997. Nonfilamentous C. albicans mutants are avirulent. Cell 90:939–49
    [Google Scholar]
  83. 83.
    Lopes JP, Stylianou M, Backman E, Holmberg S, Jass J et al. 2018. Evasion of immune surveillance in low oxygen environments enhances Candida albicans virulence. mBio 9:6e02120–18
    [Google Scholar]
  84. 84.
    Lu Y, Su C, Ray S, Yuan Y, Liu H. 2019. CO2 signaling through the Ptc2-Ssn3 axis governs sustained hyphal development of Candida albicans by reducing Ume6 phosphorylation and degradation. mBio 10:1e02320–18
    [Google Scholar]
  85. 85.
    Lu Y, Su C, Solis NV, Filler SG, Liu H. 2013. Synergistic regulation of hyphal elongation by hypoxia, CO2, and nutrient conditions controls the virulence of Candida albicans. Cell Host Microbe 14:499–509
    [Google Scholar]
  86. 86.
    Lu Y, Su C, Wang A, Liu H. 2011. Hyphal development in Candida albicans requires two temporally linked changes in promoter chromatin for initiation and maintenance. PLOS Biol. 9:e1001105
    [Google Scholar]
  87. 87.
    Ma D, Li R. 2013. Current understanding of HOG-MAPK pathway in Aspergillus fumigatus. Mycopathologia 175:13–23
    [Google Scholar]
  88. 88.
    Maguire SL, Wang C, Holland LM, Brunel F, Neuveglise C et al. 2014. Zinc finger transcription factors displaced SREBP proteins as the major Sterol regulators during Saccharomycotina evolution. PLOS Genet. 10:e1004076
    [Google Scholar]
  89. 89.
    Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC et al. 1999. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–75
    [Google Scholar]
  90. 90.
    Mishra S, Rastogi SK, Singh S, Panwar SL, Shrivash MK, Misra K. 2019. Controlling pathogenesis in Candida albicans by targeting Efg1 and glyoxylate pathway through naturally occurring polyphenols. Mol. Biol. Rep. 46:5805–20
    [Google Scholar]
  91. 91.
    Morales DK, Grahl N, Okegbe C, Dietrich LE, Jacobs NJ, Hogan DA. 2013. Control of Candida albicans metabolism and biofilm formation by Pseudomonas aeruginosa phenazines. mBio 4:e00526–12
    [Google Scholar]
  92. 92.
    Moriwaki-Takano M, Iwakura R, Hoshino K. 2021. Dimorphic mechanism on cAMP mediated signal pathway in Mucor circinelloides. Appl. Biochem. Biotechnol. 193:1252–65
    [Google Scholar]
  93. 93.
    Mulhern SM, Logue ME, Butler G. 2006. Candida albicans transcription factor Ace2 regulates metabolism and is required for filamentation in hypoxic conditions. Eukaryot. Cell 5:2001–13
    [Google Scholar]
  94. 94.
    Nojosa Oliveira L, Aguiar Goncales R, Garcia Silva M, Melo Lima R, Vieira Tomazett M et al. 2020. Characterization of a heme-protein responsive to hypoxia in Paracoccidioides brasiliensis. Fungal Genet. Biol. 144:103446
    [Google Scholar]
  95. 95.
    Nucci M, Perfect JR. 2008. When primary antifungal therapy fails. Clin. Infect. Dis. 46:1426–33
    [Google Scholar]
  96. 96.
    Okagaki LH, Nielsen K. 2012. Titan cells confer protection from phagocytosis in Cryptococcus neoformans infections. Eukaryot. Cell 11:820–26
    [Google Scholar]
  97. 97.
    Okagaki LH, Strain AK, Nielsen JN, Charlier C, Baltes NJ et al. 2010. Cryptococcal cell morphology affects host cell interactions and pathogenicity. PLOS Pathog. 6:e1000953
    [Google Scholar]
  98. 98.
    Orlowski M. 1991. Mucor dimorphism. Microbiol. Rev. 55:234–58
    [Google Scholar]
  99. 99.
    Pan M, Wang Q, Liu Y, Xiao N, Niu X et al. 2022. Paeonol enhances treatment of fluconazole and amphotericin B against oropharyngeal candidiasis through HIF-1α related IL-17 signaling. Med. Mycol. 60:3myac011
    [Google Scholar]
  100. 100.
    Paul S, Stamnes M, Thomas GH, Liu H, Hagiwara D et al. 2019. AtrR is an essential determinant of azole resistance in Aspergillus fumigatus. mBio 10:2e02563–18
    [Google Scholar]
  101. 101.
    Phillips GJ, Borgia PT. 1985. Effect of oxygen on morphogenesis and polypeptide expression by Mucor racemosus. J. Bacteriol. 164:1039–48
    [Google Scholar]
  102. 102.
    Pradhan A, Avelar GM, Bain JM, Childers DS, Larcombe DE et al. 2018. Hypoxia promotes immune evasion by triggering β-glucan masking on the Candida albicans cell surface via mitochondrial and cAMP-protein kinase A signaling. mBio 9:6e01318–18
    [Google Scholar]
  103. 103.
    Rajasenan S, Osmani AH, Osmani SA. 2022. Modulation of sensitivity to gaseous signaling by sterol-regulatory hypoxic transcription factors in Aspergillus nidulans biofilm cells. Fungal Genet. Biol. 163:103739
    [Google Scholar]
  104. 104.
    Rastogi SK, van Wijlick L, Ror S, Lee KK, Roman E et al. 2020. Ifu5, a WW domain-containing protein interacts with Efg1 to achieve coordination of normoxic and hypoxic functions to influence pathogenicity traits in Candida albicans. Cell. Microbiol. 22:e13140
    [Google Scholar]
  105. 105.
    Raymond J, Segre D. 2006. The effect of oxygen on biochemical networks and the evolution of complex life. Science 311:1764–67
    [Google Scholar]
  106. 106.
    Roemer T, Krysan DJ. 2014. Antifungal drug development: challenges, unmet clinical needs, and new approaches. Cold Spring Harb. Perspect. Med. 4:5a019703
    [Google Scholar]
  107. 107.
    Ross BS, Lofgren LA, Ashare A, Stajich JE, Cramer RA. 2021. Aspergillus fumigatus in-host HOG pathway mutation for cystic fibrosis lung microenvironment persistence. mBio 12:e0215321
    [Google Scholar]
  108. 108.
    Rossignol T, Ding C, Guida A, d'Enfert C, Higgins DG, Butler G. 2009. Correlation between biofilm formation and the hypoxic response in Candida parapsilosis. Eukaryot. Cell 8:550–59
    [Google Scholar]
  109. 109.
    Rudrabhatla PK, Reghukumar A, Thomas SV. 2022. Mucormycosis in COVID-19 patients: predisposing factors, prevention and management. Acta Neurol. Belg. 122:273–80
    [Google Scholar]
  110. 110.
    Sellam A, Al-Niemi T, McInnerney K, Brumfield S, Nantel A, Suci PA. 2009. A Candida albicans early stage biofilm detachment event in rich medium. BMC Microbiol. 9:25
    [Google Scholar]
  111. 111.
    Sellam A, van het Hoog M, Tebbji F, Beaurepaire C, Whiteway M, Nantel A. 2014. Modeling the transcriptional regulatory network that controls the early hypoxic response in Candida albicans. Eukaryot. Cell 13:675–90
    [Google Scholar]
  112. 112.
    Setiadi ER, Doedt T, Cottier F, Noffz C, Ernst JF. 2006. Transcriptional response of Candida albicans to hypoxia: linkage of oxygen sensing and Efg1p-regulatory networks. J. Mol. Biol. 361:399–411
    [Google Scholar]
  113. 113.
    Shekhova E, Ivanova L, Kruger T, Stroe MC, Macheleidt J et al. 2019. Redox proteomic analysis reveals oxidative modifications of proteins by increased levels of intracellular reactive oxygen species during hypoxia adaptation of Aspergillus fumigatus. Proteomics 19:e1800339
    [Google Scholar]
  114. 114.
    Shepardson KM, Jhingran A, Caffrey A, Obar JJ, Suratt BT et al. 2014. Myeloid derived hypoxia inducible factor 1-alpha is required for protection against pulmonary Aspergillus fumigatus infection. PLOS Pathog. 10:e1004378
    [Google Scholar]
  115. 115.
    Shepardson KM, Ngo LY, Aimanianda V, Latge JP, Barker BM et al. 2013. Hypoxia enhances innate immune activation to Aspergillus fumigatus through cell wall modulation. Microbes Infect. 15:259–69
    [Google Scholar]
  116. 116.
    Stichternoth C, Ernst JF. 2009. Hypoxic adaptation by Efg1 regulates biofilm formation by Candida albicans. Appl. Environ. Microbiol. 75:3663–72
    [Google Scholar]
  117. 117.
    Stichternoth C, Fraund A, Setiadi E, Giasson L, Vecchiarelli A, Ernst JF. 2011. Sch9 kinase integrates hypoxia and CO2 sensing to suppress hyphal morphogenesis in Candida albicans. Eukaryot. Cell 10:502–11
    [Google Scholar]
  118. 118.
    Stoldt VR, Sonneborn A, Leuker CE, Ernst JF. 1997. Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J. 16:1982–91
    [Google Scholar]
  119. 119.
    Telzrow CL, Esher Righi S, Castro-Lopez N, Campuzano A, Brooks JT et al. 2022. An immunogenic and slow-growing cryptococcal strain induces a chronic granulomatous infection in murine lungs. Infect. Immun. 90:e0058021
    [Google Scholar]
  120. 120.
    Valle-Maldonado MI, Patino-Medina JA, Perez-Arques C, Reyes-Mares NY, Jacome-Galarza IE et al. 2020. The heterotrimeric G-protein beta subunit Gpb1 controls hyphal growth under low oxygen conditions through the protein kinase A pathway and is essential for virulence in the fungus Mucor circinelloides. Cell. Microbiol. 22:e13236
    [Google Scholar]
  121. 121.
    van der Wel H, Ercan A, West CM. 2005. The Skp1 prolyl hydroxylase from Dictyostelium is related to the hypoxia-inducible factor-alpha class of animal prolyl 4-hydroxylases. J. Biol. Chem. 280:14645–55
    [Google Scholar]
  122. 122.
    Vellanki S, Billmyre RB, Lorenzen A, Campbell M, Turner B et al. 2020. A novel resistance pathway for calcineurin inhibitors in the human-pathogenic Mucorales Mucor circinelloides. mBio 11:1e02949–19
    [Google Scholar]
  123. 123.
    Wachtler B, Citiulo F, Jablonowski N, Forster S, Dalle F et al. 2012. Candida albicans-epithelial interactions: dissecting the roles of active penetration, induced endocytosis and host factors on the infection process. PLOS ONE 7:e36952
    [Google Scholar]
  124. 124.
    WHO (World Health Organ.) 2022. . WHO fungal priority pathogens list to guide research, development, and public health action Rep. WHO Geneva:
  125. 125.
    Willger SD, Puttikamonkul S, Kim KH, Burritt JB, Grahl N et al. 2008. A sterol-regulatory element binding protein is required for cell polarity, hypoxia adaptation, azole drug resistance, and virulence in Aspergillus fumigatus. PLOS Pathog. 4:e1000200
    [Google Scholar]
  126. 126.
    Witchley JN, Basso P, Brimacombe CA, Abon NV, Noble SM. 2021. Recording of DNA-binding events reveals the importance of a repurposed Candida albicans regulatory network for gut commensalism. Cell Host Microbe 29:1002–13.e9
    [Google Scholar]
  127. 127.
    Xu W, Peng J, Li D, Tsui CKM, Long Z et al. 2018. Transcriptional profile of the human skin pathogenic fungus Mucor irregularis in response to low oxygen. Med. Mycol. 56:631–44
    [Google Scholar]
  128. 128.
    Zaragoza O, Garcia-Rodas R, Nosanchuk JD, Cuenca-Estrella M, Rodriguez-Tudela JL, Casadevall A. 2010. Fungal cell gigantism during mammalian infection. PLOS Pathog. 6:e1000945
    [Google Scholar]
  129. 129.
    Zhao Y, Lin X. 2021. A PAS protein directs metabolic reprogramming during cryptococcal adaptation to hypoxia. mBio 12:2e03602–20
    [Google Scholar]
  130. 130.
    Znaidi S, van Wijlick L, Hernandez-Cervantes A, Sertour N, Desseyn JL et al. 2018. Systematic gene overexpression in Candida albicans identifies a regulator of early adaptation to the mammalian gut. Cell. Microbiol. 20:e12890
    [Google Scholar]
  131. 131.
    Znaidi S, Weber S, Al-Abdin OZ, Bomme P, Saidane S et al. 2008. Genomewide location analysis of Candida albicans Upc2p, a regulator of sterol metabolism and azole drug resistance. Eukaryot. Cell 7:836–47
    [Google Scholar]
/content/journals/10.1146/annurev-micro-032521-021745
Loading
/content/journals/10.1146/annurev-micro-032521-021745
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error